Mathematica 双参差调谐放大器分析

发布于 17 天前  52 次阅读


先上图:

纵轴为K,横轴为\xi=Q_L \frac{2\Delta f}{f_0},当\xi _ 0 = 0,1,2 时的函数图像。
根据|\frac{K_V}{K_{V0}}| = \frac{1}{\sqrt{1+(\frac{2Q_L\Delta f}{f_0})^2}}=\frac{1}{1+\xi ^2}

mma代码如下:

ClearAll;
x = Range[-5, 5, 0.0001];
xx = 1/Sqrt[1 + x^2];
xx = xx^2;
data = Transpose[{x, xx}];
x2 = x + 1;
 xx2 = 1/Sqrt[1 + x2^2];
 x3 = x - 1;
 xx3 = 1/Sqrt[1 + x3^2];
 d2 = xx2*xx3
data2 = Transpose[{x, d2}];
x4 = x + 2;
 xx4 = 1/Sqrt[1 + x4^2];
 x5 = x - 2;
 xx5 = 1/Sqrt[1 + x5^2];
 d3 = xx4*xx5;
data3 = Transpose[{x, d3}];
Show[ListPlot[data], ListPlot[data2], ListPlot[data3]]

「雪霁融雾月,冰消凝夜雨」