非线性方程组

lzusa 发布于 2021-11-22 2 次阅读


牛顿法

对于可微函数进行泰勒展开,可得

$$f(x+s)\approx f(x) + J_f(x)s$$

其中,$J_f(x)$是$f$的雅可比矩阵,那么对于给出的上式,由非线性方程组的牛顿法:

$$J_f(x_k)s_k=-f(x_k)$$

$$x_{k+1}=x_k+s_k$$

代码如下:

#include <stdio.h>
#include <cmath>
#include <cstdlib>
#include <iostream>
using namespace std;
#define N 100
const float eps = 0.0000001;
double b[N], x[N];
float r[N];
float a[N][N];
double A[N][N];
float ans[N];
int n;
int select(int x) //部分选主元
{
    int f = x;
    for (int i = x + 1; i <= n; i++)
        if (fabs(a[i][x]) > fabs(a[f][x]))
            f = i;
    if (f != x)
    {
        for (int i = x; i <= n + 1; i++)
            swap(a[f][i], a[x][i]);
    }
    return 0;
}

int Gauss()
{
    float t;
    for (int i = 1; i <= n; i++)
    {
        select(i);
        if (fabs(a[i][i]) <= eps)
        {
            printf("No Answers\n");
            return 0;
        }
        for (int j = i + 1; j <= n; j++)
        {
            if (fabs(a[j][i]) > eps)
            {
                t = a[i][i] / a[j][i];
                for (int k = i; k <= n + 1; k++)
                    a[j][k] = a[j][k] * t - a[i][k];
            }
        }
    }
    //解出答案
    for (int i = n; i; i--)
    {
        for (int j = i + 1; j <= n; j++)
        {
            a[i][n + 1] -= a[i][j] * a[j][n + 1];
        }
        a[i][n + 1] /= a[i][i];
    }
    return 0;
}

int main()
{
    n = 2; //未知数个数
    double x0 = 4, y0 = 0.5; //初值
    for (int i = 1; i <= 100; i++) // 迭代次数
    {
        a[1][1] = -1 + 4 * y0; a[1][2] = 4 * x0; a[2][1] = -y0; a[2][2] = -x0 - 2 * y0; //定义雅可比矩阵
        a[1][3] = -(5 * x0 * y0 - x0 * (1 + y0)); a[2][3] = -(-x0 * y0 + (1 - y0) * (1 + y0));
        Gauss();
        x0 += a[1][3];
        y0 += a[2][3];
    }
    printf("x = %.4lf \n y = %.4lf", x0, y0);
    return 0;
}

当初值取[0,-2],[4,0.5],[0,2]时收敛到三个不同的零点:

看烟花已落,你我仍是陌路人
最后更新于 2021-11-22