特征值问题

发布于 2021-10-18  535 次阅读



转载,复制,请遵循文末链接CC BY-NC-SA 4.0国际许可协议

带位移的反幂法

#include <stdio.h>
#include <cmath>
#include <cstdlib>
#include <iostream>
using namespace std;
#define N 100
#define MAXN 20
const float eps = 0.0000001;
float b[N],x[N];
float r[N];
float a[N][N];
float A[N][N];
float ans[N];
int n;
int select(int x) //部分选主元
{
    int f = x;
    for (int i = x + 1; i <= n; i++)
        if (fabs(a[i][x]) > fabs(a[f][x]))
            f = i;
    if (f != x)
    {
        for (int i = x; i <= n + 1; i++)
            swap(a[f][i], a[x][i]);
    }
    return 0;
}

int Gauss()
{
    float t;
    for (int i = 1; i <= n; i++)
    {
        select(i);
        if (fabs(a[i][i]) <= eps)
        {
            printf("No Answers\n");
            return 0;
        }
        for (int j = i + 1; j <= n; j++)
        {
            if (fabs(a[j][i]) > eps)
            {
                t = a[i][i] / a[j][i];
                for (int k = i; k <= n + 1; k++)
                    a[j][k] = a[j][k] * t - a[i][k];
            }
        }
    }
    //解出答案
    for (int i = n; i; i--)
    {
        for (int j = i + 1; j <= n; j++)
        {
            a[i][n + 1] -= a[i][j] * a[j][n + 1];
        }
        a[i][n + 1] /= a[i][i];
    }
    return 0;
}
int main()
{
    double s = 0; //位移
    n = 3;
    A[1][1] = a[1][1] = 6 - s;
    A[1][2] = a[1][2] = 2;
    A[1][3] = a[1][3] = 1;
    A[2][1] = a[2][1] = 2;
    A[2][2] = a[2][2] = 3 - s;
    A[2][3] = a[2][3] = 1;
    A[3][1] = a[3][1] = 1;
    A[3][2] = a[3][2] = 1;
    A[3][3] = a[3][3] = 1 - s;
    a[1][4] = 1; a[2][4] = 2; a[3][4] = 2;//初始向量
    for (int i = 1; i <= MAXN; i++)
    {
        Gauss();
        float sum = 0;
        for (int j = 1; j <= n; j++)
            sum += a[j][n + 1] * a[j][n + 1];
        float r = sqrt(sum);
        printf("%d : %f\n", i, 1 / r + s);
        for (int j = 1; j <= n; j++)
            a[j][n + 1] /= r;
        double p = 1 / a[n][n + 1];
        printf("%f %f 1\n", a[1][n + 1] * p, a[2][n + 1] * p);
        for (int j = 1; j <= n; j++)
            for (int k = 1; k <= n; k++)
                a[j][k] = A[j][k];
    }
    return 0;
}

当位移取2时,有以下迭代结果:

验证如下:
使用mathematica直接计算矩阵的特征值:
可以得到特征值如下:

与反幂法所得结果一致。
另外,测试位移为7时,输出结果如下:

位移为0时,结果如下:

可以看出,反幂法的收敛速度很快,而且可以得到很精确的解

相比于特征值,想要得到让特征向量收敛到一个较为精确的解,所需要的迭代次数更多,如下图所示:

将得到的特征向量和mathematica中得到的解对比,发现几乎没有误差,如下:

带位移的QR迭代法

#include <iostream>
#include <stdio.h>
#include <cmath>
using namespace std;
#define eps 0.001
#define MAXN 10

class Complex
{
public:
    Complex() 
    { 
        for (int i = 0; i <= 9; i++)
            for (int j = 0; j <= 9; j++)
                a[i][j] = 0;
        n = 0; m = 0; 
    }
    friend Complex operator +(Complex& c1, Complex& c2);
    friend Complex operator -(Complex& c1, Complex& c2);
    friend Complex operator *(Complex& c1, Complex& c2);
    friend Complex operator !(Complex& c1);
    friend ostream& operator <<(ostream&, Complex&);
    friend istream& operator >>(istream&, Complex&);

    double a[10][10]; //定义矩阵,矩阵中a[i][j]表示复数的实部,a[i][j][1]表示复数的虚部
    int n, m; //标识矩阵的大小,由用户输入
};
Complex A, Q;
Complex operator +(Complex& c1, Complex& c2) //矩阵加法的重载实现
{
    Complex c3;
    if (c1.m != c2.m || c1.n != c2.n) //判断是否能够进行矩阵加法
    {
        printf("这两个矩阵不能相加\n");
        return c3;
    }
    c3.m = c1.m;
    c3.n = c1.n;
    for (int i = 1; i <= c1.m; i++)
        for (int j = 1; j <= c1.n; j++)
        {
            c3.a[i][j] = c1.a[i][j] + c2.a[i][j];
           // c3.a[i][j][1] = c1.a[i][j][1] + c2.a[i][j][1];
        }
    return c3;
}
Complex operator -(Complex& c1, Complex& c2) //矩阵减法的重载实现
{
    Complex c3;
    if (c1.m != c2.m || c1.n != c2.n) //判断是否能够进行矩阵减法
    {
        printf("这两个矩阵不能相减\n");
        return c3;
    }
    c3.m = c1.m;
    c3.n = c1.n;
    for (int i = 1; i <= c1.m; i++)
        for (int j = 1; j <= c1.n; j++)
        {
            c3.a[i][j] = c1.a[i][j] - c2.a[i][j];
         //   c3.a[i][j][1] = c1.a[i][j][1] - c2.a[i][j][1];
        }
    return c3;
}

Complex operator *(Complex& c1, Complex& c2) //矩阵乘法的实现
{
    Complex c3;
    if (c1.n != c2.m) //判断能否进行矩阵乘法
    {
        printf("这两个矩阵不能相乘\n");
        return c3;
    }
    c3.m = c1.m;
    c3.n = c2.n;
    double s1 = 0, s2 = 0;
    for (int i = 1; i <= c1.m; i++)
    {        
        for (int m = 1; m <= c2.n; m++)
        {
            for (int j = 1; j <= c1.n; j++)
            {
                s1 += c1.a[i][j] * c2.a[j][m];
               // s2 += c1.a[i][j] * c2.a[j][m][1] + c1.a[i][j][1] * c2.a[j][m];
            }
            c3.a[i][m] = s1;
          //  c3.a[i][m][1] = s2;
            s1 = 0;
          //  s2 = 0;
        }
    }
    return c3;
}
Complex operator !(Complex& c1) //矩阵转置的实现
{
    Complex c2;
    c2.n = c1.m;
    c2.m = c1.n;
    for (int i = 1; i <= c1.m; i++)
        for (int j = 1; j <= c1.n; j++)
        {
            c2.a[j][i] = c1.a[i][j];
          //  c2.a[j][i][1] = -c1.a[i][j][1];
        }        
    return c2;
}

ostream & operator << (ostream & output, Complex &c) //矩阵输出
{
    for (int i = 1; i <= c.m; i++)
    {
        for (int j = 1; j <= c.n; j++)
            output << c.a[i][j] << ' ';
        output << endl;
    }
    return output;
}
istream & operator >> (istream & input, Complex &c) //矩阵输入
{
    printf("请输入矩阵的大小:\n"); 
    input >> c.m >> c.n; //先输入该矩阵的大小
    printf("请输入矩阵:\n");
    for (int i = 1; i <= c.m; i++)
    {
        for (int j = 1; j <= c.n; j++)
            input >> c.a[i][j];
    }
    return input;
}

void Maqr()
{
    double u, alpha, w, t;
    if (A.m < A.n)
    {
        cout << "\nQR分解失败!" << endl;
        exit(1);
    }
    Q.n = A.m;
    Q.m = A.m;
    for (int i = 1; i <= A.m; i++)
        for (int j = 1; j <= A.m; j++)
        {
            Q.a[i][j] = 0.0;
            if (i == j) Q.a[i][j] = 1.0;
        }
    int nn = A.n;
    if (A.m == A.n) nn = A.m - 1;
    for (int k = 1; k <= nn; k++)
    {
        u = 0.0;
        for (int i = k; i <= A.m; i++)
        {
            w = fabs(A.a[i][k]);
            if (w > u) u = w;
        }
        alpha = 0.0;
        for (int i = k; i <= A.m; i++)
        {
            t = A.a[i][k] / u;
            alpha = alpha + t * t;
        }
        if (A.a[k][k] > 0.0) u = -u;
        alpha = u * sqrt(alpha);
        if (fabs(alpha) + 1.0 == 1.0)
        {
            cout << "\nQR分解失败!" << endl;
            exit(1);
        }
        u = sqrt(2.0 * alpha * (alpha - A.a[k][k]));
        if ((u + 1.0) != 1.0)
        {
            A.a[k][k] = (A.a[k][k] - alpha) / u;
            for (int i = k + 1; i <= A.m; i++) A.a[i][k] = A.a[i][k] / u;
            for (int j = 1; j <= A.m; j++)
            {
                t = 0.0;
                for (int jj = k; jj <= A.m; jj++)
                    t = t + A.a[jj][k] * Q.a[jj][j];
                for (int i = k; i <= A.m; i++)
                    Q.a[i][j] = Q.a[i][j] - 2.0 * t * A.a[i][k];
            }

            for (int j = k + 1; j <= A.n; j++)
            {
                t = 0.0;
                for (int jj = k; jj <= A.m; jj++)
                    t = t + A.a[jj][k] * A.a[jj][j];
                for (int i = k; i <= A.m; i++)
                    A.a[i][j] = A.a[i][j] - 2.0 * t * A.a[i][k];
            }
            A.a[k][k] = alpha;
            for (int i = k + 1; i <= A.m; i++)  A.a[i][k] = 0.0;
        }
    }
    for (int i = 1; i <= A.m; i++)
        for (int j = i + 1; j <= A.m; j++)
        {
            t = Q.a[i][j]; Q.a[i][j] = Q.a[j][i]; Q.a[j][i] = t;
        }
   // cout << "Q:" << endl;
   //cout << Q;

  //  cout << "R" << endl;
   // cout << A;
}
int main()
{
    A.m = 3;
    A.n = 3;
    A.a[1][1] = 6;  A.a[1][2] = 2;  A.a[1][3] = 1;
    A.a[2][1] = 2; A.a[2][2] = 3; A.a[2][3] = 1;
    A.a[3][1] = 1; A.a[3][2] = 1; A.a[3][3] = 1;
    double s = A.a[3][3]; //位移
    Complex I;
    I.m = 3;
    I.n = 3;
    I.a[1][1] = s;  I.a[1][2] = 0;  I.a[1][3] = 0;
    I.a[2][1] = 0; I.a[2][2] = s; I.a[2][3] = 0;
    I.a[3][1] = 0; I.a[3][2] = 0; I.a[3][3] = s;
    for (int i = 1; i <= MAXN; i++)
    {
        cout << i << ":" << endl;
        I.a[1][1] = I.a[2][2] = I.a[3][3] = A.a[3][3];
        A = A - I;
        Maqr();
        A = A * Q;
        A = A + I;
        cout << A;
    }

}

运行结果如下图:

和使用mathematica得到的特征值相比较:

可以发现,在第五次迭代时,带位移的QR分解就已经得到了较为精确的特征值。

「雪霁融雾月,冰消凝夜雨」
最后更新于 2021-10-18